Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine
نویسندگان
چکیده
The locally linear embedding (LLE) algorithm is an unsupervised technique recently proposed for nonlinear dimensionality reduction. In this paper, we describe its supervised variant (SLLE). This is a conceptually new method, where class membership information is used to map overlapping high dimensional data into disjoint clusters in the embedded space. In experiments, we combined it with support vector machine (SVM) for classifying handwritten digits from the MNIST
منابع مشابه
Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملA Methodology for Handwritten Character Recognition Using SVM
This paper discusses a methodology for handwritten character recognition applying feature subset selection to reduce number of features. Its novelty lies in the use of a genetic algorithm for the preparation of input data for a support vector machine which is employed to recognize the handwritten Persian digits in particular. Comprehensive experiments on handwritten Persian digits demonstrate t...
متن کاملA New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate
Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...
متن کاملLearning a Nonlinear Embedding by Preserving Class Neighbourhood Structure
We show how to pretrain and fine-tune a multilayer neural network to learn a nonlinear transformation from the input space to a lowdimensional feature space in which K-nearest neighbour classification performs well. We also show how the non-linear transformation can be improved using unlabeled data. Our method achieves a much lower error rate than Support Vector Machines or standard backpropaga...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003